

SUstainabledevelopmeNT Smart Agriculture Capacity

(SUNSpACe)

Project Reference No	598748-EPP-1-2018-1-FR-EPPKA2-CBHE-JP
	(2018-3228/001-001)
Nature	Cross pilot report
Dissemination Level	Restricted
Date	2022.11.22
Editor(s)	AEC, CMU, KEC, KKU, & RUB
Document Description	The purpose of this document is to report the T2.6 cross-pilot plan,
	and training to farmers from Bhutan, Nepal, and Thailand

Document history

Date	Name	Description		
2022.11.22	Ugyen Yangchen (RUB)	Initialization of the document		
2022.12.03	Keshar Prasain (KEC)	Input		
2022.12.08	Patcharee Hongthong (KKU)	Input and Review		
2022.12.09	Keshar Prasain (KEC)	Input		
2022.12.10	Kalpana Karki (AEC)	Input		
2022.12.11	Ugyen Yangchen (RUB)	Formatting and input		

Executive Summary

The first part of the document consists of introduction, framework, plans for implementation of cross-pilot. The second part is on the implementation of the cross-pilot. Five Asian partners from the SUNSpACe consortium participated in the Cross Pilot training as the resource persons held at KEC and AEC, Nepal. The training was organized for two days from 14 to 15 November 2022. Ten farmers from Bhutan, Nepal, and Thailand participated in the training. The training had input on sensors and their applications in crops, cattle, and fish production with hands-on practice and demonstration of the sensor. The participants also visited the hydroponic farm in Lalitpur to understand the application of smart technology in hydroponics. The training ended with post-evaluation, feedback on the training, and the award of certificates to participants and resource persons.

Table of Contents

Abbreviations and Acronymsiii
List of Tablesiv
List of Figuresv
1 Introduction
1.1 Framework for cross-pilot
1.2 Plans for Implementation
1.3 Cross pilot program
2 Cross-pilot Training of Farmers
2.1 Training topics
2.2 Training programme schedule
2.3 Farmer participants
2.4 Trainer
3. Evaluation of Farmers17
4. Feedback from the Participants
Annexure 1: Knowledge assessment form
Annexure 2: Pictures from Cross Pilot training

Abbreviations and Acronyms

AEC	Acme Engineering College
CMU	Chiang Mai University
CNR	College of Natural Resources
KEC	Kantipur Engineering College
KKU	Khon Kaen University
RUB	Royal University of Bhutan

List of Tables

Table 1 Competency of Asian partners	6
Table 2 Service analysis from each pilot	7
Table 3. Programme for Cross Pilot Training	
Table 4. Farmers participating the cross pilot training	
Table 5: Name of the trainers	
Table 6. Knowledge assessment form	

List of Figures

Figure 1: Evaluation	of the farmers1	7
----------------------	-----------------	---

1 Introduction

Cross-pilot is Task 2.6 under work package 2 (Development: Implementation and Assessment). There are three different pilots i.e organic, quality, and working condition and health-sharing pilots in partner countries (Bhutan, Nepal, and Thailand). The best practices from every partner countries will be integrated under cross-pilot.

The Asian partners from the SUNSpACe Consortium, Chang Mai University (CMU) and Khon Kaen University (KKU) from Thailand, Acme Engineering College (AEC) and Kantipur Engineering College (KEC) from Nepal and Royal University of Bhutan (RUB) from Bhutan are the partner countries responsible to implement the cross-pilot training.

1.1 Framework for cross-pilot

The pilots are analysed based on the competency and services that can be delivered from each pilots. The details are in Table 1 and Table 2.

a. Competency analysis

Partners	Strength	Weakness	Nice to Have
CMU	1. Farm Sensor	1. Farming Practice	1. Marketing
	2. IoT Platform	2. Farm Management Practice	Tool/Platform
	3. Business Incubation	3. International Standard	2. Farmers' best
			practice
			exchange
KKU	1. Farm sensor outdoor	1. Farming Practice	1. Marketing business
	2. Farm management	2. Farm Marketing and	and management
	3. Farmer networking	Management Practice	2. Farmers' best
		3. International Standard	practice exchange
		4. Farmer's digital ability skill	
AEC	1. Farm Sensors	1. Farming practice and	1. Marketing Platform
	(outdoor and indoor)	management	2. Knowledge exchange
	2. IoT platform	2. Weak digital literacy among the	among farmers
	3. Automation system	farmers	3. Service centres for
		3. No concrete standard for	easy communication
		certification of smart farmers	between agro-expert
			and famers
KEC	1. Farm Sensors	1. Digital literacy among farmers	1. Marketing Platform
	2. IoT Platform	is very low	2. Farming knowledge
	3. Agro-Health Lab	2. Government subsidy not	exchange
	4. Startups transparent		3. Awareness and need
	Development	3. Smart Farming is a new idea to	for Smart Farming
		farmers and its affordability is a	technology among
		question	farmers
		4. National and International	
	1	certification in farming	
RUB	1. Farm Sensor	1. Digital literacy of farmers	1. Marketing Platform
	2. Off-season vegetable	below average	2. Sensitization and
	cultivation in a	2. Smart technology adoption	awareness of smart
	protected	limited to government and	technology in
	environment	research centers. These	farming
		limitations may hinder the	

 Table 1 Competency of Asian partners

adoption of smart technology in	
farmers' field	

b. Service analysis

Table 2 Service analysis from each pilot

		Thailand			Bhutan	Nepal	
		Pilot1 - Organics	Pilot2 - Vegeta bles	Pilot3 - Cattle	Pilot4 - Off Season vegetab	Pilot5 - Vegetable	Pilot6- Fishery
D;1	1 Tho	1 Focus on 4	The	Tho	le	Focus on form	The
Pil ots cla ss	1.The descri ption of the theore tical part	1. Focus on 4 main topics i.e. (1) Farm Management (2) Farm Sensoring (3) Farm Standards (4) Agricultural Product Marketing 2. Specialized in Farm Sensoring and Marketing 3. Expert in Organic Standard, Halal Standard and Good Agricultural Practice (GAP)	The cultivat ing skill (such as reservin g resourc es, fertilize rs, and pesticid es) and the adoptio n of smart farm technol ogy and farmers ' applicat ion will be improv ed up to 30- 70%. To make vegetab le cultivat ion more efficien t and	The raising of cattle skills (nutriti on and living conditi ons of cattle) and the adoptio n of smart farm technol ogy and farmers ' applica tion will be improv ed up to 30- 70%. To increas e the exchan ge rate of meat and reduce cow	Cultiva tion of off- season vegetab les in protecte d environ ment, adoptio n and applicat ion of smart technol ogy (irrigati on and soil moistur e sensors) . The smart technol ogy is expecte d to 1. improv e product ivity 30 - 50% of cole crops	Focus on farm sensors and data analytics. Smart technology will help to reduce the use pesticides and chemical fertilizer. The data stored will be used for predicting farming practice in future.	The death rate of fish inside the pond is reduced using smart technolo gy. The automati on will circulate the water by putting on the motor when Oxygen level goes down the threshol d value.

	1		1		1		1
			easier	stress	(Caulifl		
			smart	with	ower)		
			tools.	smart	and		
				tools.	2.		
					farmers		
					would		
					earn		
					50%		
					more		
					income,		
					3.		
					Control		
					resourc		
					e usage		
					(water)		
					· · ·		
					using drip and		
					drip and		
					sprinkle		
					r		
					irrigatio		
					n and		
					proper		
					nutrient		
					manage		
					ment		
					4.		
					reduce		
					50%		
					usage of		
					labour		
					in		
					cultivati		
					on of		
					vegetab		
					le.		
	2.	1. 20 VDO	1. 18	VDO	1. 8	13 Videos have	15
	Recor	Contents have	recorded		VDO	been recorded	videos
	ds of	been recorded	training,		recorde	for story board	have
	practi	(in Thai)	recorded		d	,	been
	cal		visits and				recorded
	sessio		recorded				for story
	n		trips	101 11010			board.
Sm	3.	1. Organic	1.Humi	1.Moti	1. Grow	Smart vegetable	Smart
art	S. What	standard	dity	on	ing off-	farm including	fish farm
lab	is the	2. GAP	sensors	sensors	season	Indoor and	having
140	smart		2. Soil	2.water	vegetab	outdoor sensor	Oxygen,
	lab for	management			les in a		
		platform 3. Indoor	sensors	sprinkl		to implement	Potassiu
	each		3. Tompon	er	protecte	farm control	m and
	partne	sensors	Temper	system	d .	system based on	Tempera
	r	4. Weather	ature	3.	environ	IoT platform	ture

	sensors	sensors	Tempe	ment		sensor.
	5. Farm control	4.	rature	2.Irrigat		Control
	system	Weathe	sensors	ion		system
	6. IoT platform	r station	4.	Control		based
		5. Data	Weathe	system		IoT
		collecti	r	control		platform
		on	station	system		maintain
		6. Farm	5. Data	3.		s the
		control	collecti	Weathe		Oxygen
		system	on	r		level
			6. Farm	Sensors		inside
			control	4.		the fish
			system	Indoor		pond.
				sensors		
4.	1. Theoritical	1.	1. The	1.	Soil moisture	Oxygen,
Servic	Knowledge	Water	motion	Theoret	sensor detects	Potassiu
es of	Training	release	sensor	ical	the moisture	m and
the	2. Smart Farm	control	system	knowle	level of soil and	Tempera
smart	Practical	system	for	dge	automatically	ture
lab	Training	via	monito	Trainin	put on the	sensor
and	3. Virtual	smartph	rs the	g 2.	irrigation	inside
the	Equipment	one	cow's	Smart	system if	the fish
descri	Training	training	behavi	Farm	required.	pond
ption	4. Smart Farm	2. The	or	practica	Similarly, light,	detects
	Consultation	smart	trainin	1	temperature and	the
	5. Agro-	sensor	g	Trainin	PH value is	correspo
	Business	system	2. The	g 3.	adjusted.	nding
	Incubation	measur	cattle	Smart	Weather station	value
		es soil	housin	irrigatio	detects the	and the
		moistur	g	n	climatic	automati
		e levels	temper	controll	condition for	c system
		to	ature	ing	vegetable	maintain
		provide	control	system	cultivation.	s the
		adequat	and	via		value
		e water	detecti	smart		based on
		to the	on	phone-		need of
		plant's	system	schedul		fishes.
		needs	for	ing or		
		efficien	keepin	operatio		
		tly	g cows	n of		
		training	cool	irrigatio		
		3. The	trainin	n in		
		system	g	greenho		
		for	3. The	use via		
		detectin	data of	smartph		
		g toxins	cow	one		
		and	growth	4.		
		contami	rate	Smart		
		nants in	will	sensors		
1		water	collect	measur		

			training	in the	e soil		
			4. The	data	moistur		
			weather	collecti	e,		
			station	on	tempera		
			for	system	ture,		
			detectin	with an	UV,		
			g	intellig	humidit		
			climate	ent	y, Co2		
			for	RFID			
			professi	system			
			onal	trainin			
			vegetab	g			
			le	-			
			cultivat				
			ion				
			training				
Ī	5.	1. MOOC	1.	MOOC	1.	1. MOOC	1.
	What	Training	Training		MOOC	Training	Oxygen,
	are the	2. Indoor Data	2. Io	T in	Trainin	2. Indoor Data	temperat
	functi	Collection	Agricultu	ire	g 2.	Collection	ure and
	ons of	Training	training		Indoor	Training	potassiu
	each	3. Weather Data	3.	Smart	data	3. Weather Data	m level
	servic	Collection	monitorir	-	collecti	Collection	Control
	e	Training	smart co	ntrolling	on	Training	Training
		4. Farm control	training		training	4. Farm control	
		training	4.	Data	3.	training	
		5. Data	processin	g	Platfor	5. Data	
		Visualisation	training		m	Visualisation	
		6. Platform		Business	training	6. Platform	
		Training	modelling	5	4.	Training	
		7. Data analytic	0		Weathe	7. Data analytic	
		platform			r Data		
		training	health	topics		training	
		O Carrent France	suppleme		on		
		8. Smart Farm		ld visits	U		
		virtual trainer	training	naturation	5. Data Visualis		
		training 9. Agritech	7. Demo of	nstration agro-	ation 6.		
		U		0	Data		
		startup incubation	meteorolo pH and		analysti		
		meubation	sensors		c analysti		
			8. Autom	U	c platfor		
			irrigation		m		
			equipmer		training		
			installed		7. Farm		
				training	control		
				ntegrated			
			Organic	farm	(automa		
			training		tion of		
			8		weather		

					,
			, cooling pad and smart irrigatio n)		
6. How it is traine d	 Hybrid Learning (Online + Offline) E-Learning Smart Farm Lab On-Field Project On-Field Consultant 	 Hybrid Training Smart Farm Lab Visit on site Demonstration on site 	1. Hybrid learning (Online + face to face) 2. E- learning 3. Smart Farm Lab	1.HybridTraining2.SmartFarmLab, 3.Visit onsite.4.Demonstrationon site	Demons tration in Fish pond and smart farm lab visit
7. Feedb ack on the trainin g class (+,-)	 (+) New knowledge (+) Hands-on Practice (-) need more Thai content (-) need more equipment for 1-on-1 training 	 (+) New knowledge (-) Need practical/hands- on training on the handling of equipment (-) Need for more time/duration to learn smart technologies covered in the training 	(+) New and addition al knowle dge (-) Need more hands- on practice on equipm ent handlin g (-) Need more time/du ration to learn in training	The participants gave positive feedback about the training. They were happy and request us to organize such type of training frequently.	The participa nts gave positive feedbac k about the training. They were happy and request us to organize such type of training frequent ly.

1.2 Plans for Implementation

• Short term (within the project)

a. MoU Signing between KKU and KEC in Bhutan

During the project, KKU and KEC signed an MOU for the completion of the cross pilot, with the following implementation plan outlined in the agreement:

- anticipate academic matters and transfer knowledge of smart agriculture to
- support their farmers into smart farming
- share information and data between the smart labs
- conduct joint smart-farming workshop and training
- conduct joint academic researches
- support faculty and staff exchange for training and academic purpose

b. Knowledge Sharing Workshop

To ensure the cross-pilot implementation during the project duration, there will be collaborative and knowledge-sharing techniques and learning materials have been used in a local learning for future to make use of the knowledge in the distribution projects in Thailand, Nepal and Bhutan, relevant information will be shared and disseminated. Through a two-way knowledge-transfer loop with distributed stakeholders, knowledge-sharing will improve the potential in all stages of agriculture product development to improve early and late-stage development. Transparent knowledge transfer across the cross-functional institute requires knowledge sharing between Thailand, Nepal and Bhutan. KKU, CMU, KEC, AEC and RUB play critical roles in the project's external and internal knowledge distribution. Sharing of knowledge can provide benefits to smart farming and agriculture innovation in improving local farmers' agriculture product quality and enhancing local farmers' potential in Thailand, Nepal and Bhutan.

The performance training and workshop of local farmers have been organized to develop their careers in farming and livestock and promotion of opportunities for further career development within agriculture in Thailand, Nepal and Bhutan to implement cross-pilot and smart farm academy. Capacity Building of Extension Farmers on Smart Agriculture. Smart farm innovation training will provide the agricultural community with skills to assist with on-farm practice change. Project results are communicated through open farms, discussion groups, case studies and field trip days. Two days is enough time to go over harder concepts more than once. There will be two day in May 2023 for training workshops, the first of which concerns organic vegetables and the second concerns precision livestock technologies. Thirty participants are an appropriate number for 2 days of training: 10 Farmers and 5 Faculties from Thailand (KKU and CMU), 15 Farmers and 5 Faculties from Nepal (KEC, AEC and RUB).

c. Mobility of farmers to Bhutan

Two farmers from CMU, KKU, AEC and KEC will travel to Bhutan for the cross-pilot training of farmers.

d. Inviting new partners to the consortium

The SUNSpACe consortium recognizes the critical role that SUNSpACe's traditional partners, including Asian-based implementing partners, play in attracting new, non-traditional, and local partners. New partnerships that have not previously collaborated with the SUNSpACe consortium have been invited to participate in trans-regional projects utilizing cross-pilot knowledge sharing. The arrival of new partners allows the cross-pilot to be expanded further, allowing the data flows and information sharing.

• Long term (after the project)

- a. Data sharing and processing
 - i. Asian partners share data from smart lab
 - ii. Data analysis and paper writing
- b. Online Training
 - i. Smart farm academy (monthly) via online platform
- c. Research Project
 - i. Secure new (national/international) research grant
 - ii. Present paper in conference (SKIMA, ECTI N-CON, etc.)
- d. Start-up incubation using experience from the consortium
 - i. Promote the start-up in Asian country to another country

1.3 Cross pilot program

Best practices from each pilots can be shared and these practices from three pilots can be integrated. From each PCs, we select two smart farmers, and 3 academic staff to be trained in Bhutan. At least, 6 Smart Farmers and 9 academic staffs will be trained and play the role of the trainer in their country. A group of 6 administrative staff will be formed to raise awareness of the project's objectives, and to become involved in the sustainability of these actions at the Asian level (2 staff/PC).

2 Cross-pilot Training of Farmers

Organizer: Kantipur Engineering College (KEC) and Acme Engineering College (AEC), Nepal

Training Date: 14-15 November 2022

Training Venue: KEC and AEC, Nepal

Implementation of Sustainable Development Fund (SDF) of USD 200 per person per day in Bhutan from September 2022, made it expensive for partners, and farmers to travel to Bhutan. Therefore, the cross-pilot training was shifted to Nepal

Training Participants: 10 (Bhutan - 1, Nepal - 7, and Thailand 2)

During the two days Cross Pilot training, project partners and farmers from Asian countries were involved. On first day of training, pilot demonstration, skill and knowledge sharing was done with physical experimental activities, where farmers exchanged their work experiences and also questioned about their problems and interest with other farmers and delegates from partners countries. Topics covered by each Asian partners for the training is in 2.1.

2.1 Training topics

Chiang Mai University focused on the soil sensor and its application. The participants were taught to install sensor and read the collected data through mobile device and web applications. The sensors used were for soil temperature, water temperature, and soil moisture content.

Khon Kaen University focused on sensors use in cattle farm and its applications. During the training KKU demonstrated the use of RFID tag to be used in cattle to help store and access information of the cattle like age, diet, medicines taken, etc using mobile device. The use and application of temperature sensors, humidity sensor and motion sensors were also demonstrated to the participants. Participants evaluated their knowledge by the use of such sensors.

Kantipur Engineering College focused on the fruit quality in terms of Degree Brix Measurement i.e. the sugar content of fruits. Prof. Keshar Prasain from KEC demonstrated how sugar content of fruit can be determined using a fruit refractometer and how to compare quality of fruit in terms of Brix.

Acme Engineering College focused on the use of sensors for the determination of water temperature, water nutrients and oxygen concentration in fish pond.

Royal University of Bhutan highlighted the importance of soil pH and soil EC measurement and how the parameters can be controlled. RUB demonstrated the use of soil pH sensor and EC sensor to make participants familiarize with the equipment use.

On the second day, all the participants of the cross-pilot visited a farm named Hope Nepal Biophonics run by William Ashwell, a foreigner involved in fish farming and plant growing in soil less media. The farm specializes in Biofloc in which the waste generated by fish with the help of probiotic bacteria is converted to the nutrients required by the plant in hydroponic system.

The participants from Nepal, Bhutan and Thailand interacted among themselves and shared their farming practices, technology usage, and networking among the farmers of Asian countries for the knowledge, experience and skill sharing in the coming future. The participants requested the organizers for continuing such programmes with more farmer's participation.

2.2 Training programme schedule

 Table 3. Programme for Cross Pilot Training

Table 3. Programme for Cross Pilot Training				
November 14-15, 2022				
CROSS PILOT Session				
	14 November 2022			
	Venue: Acme Engineering College			
Registration, Tea & C	offee 8:30 AM – 9:00 AM			
9:00 AM - 9:30 AM	Welcome farmers from Thailand, Nepal, and Bhutan - Prof. Pradip			
	Kumar Paudyal, Principal AEC			
	Introduction of partners and participants (Self)			
	Overview of SUNSpACe project – Dr. Ravi Chandra Koirala			
	Special Remarks: Prof. Rameshwar Rijal, Chairman, KEC			
9:30am – 12:30pm	– 12:30pm Pre-evaluation of Farmers			
	Plant session (Agriculture pilot)			
	• Quality Pilot / Organic Pilot/ Vegetable Pilot- Ms. Ugyen Yangchen (RUB), Dr. Paweena Suebsombut (CMU) and Dr. Keshar Prasain (KEC)			
	• Practical session; Use of Soil Sensors, Air Sensors and Water Sensor (installation of sensors, collection of data and data interpretation)- CMU; Weather/ Agrometeriology, pH, EC (Use of weather station, data collection, interpretation and applications, use of pH and EC meter)- RUB; Comparting the brix of fruits and			
	result interpretation by the use of Refractometer- KEC			
	• Discussion of the overall session.			
12:30 PM -1:30 PM	Lunch break			
1:30 PM - 3:30 PM	Cattle and Fish session (Farm pilot)			
	• Cattle and Fish pilot –Ms. (KKU) and Ms. Kalpana Karki (AEC)			

	• Practical session: RFID sensor use, data store and data sharing, RFID tag display; Humidity sensor use for animals; Temperature Sensor and Motion Sensor installation and use (KKU); Fish pond		
	sensor installation and use (AEC)		
	Discussion		
November 15 th 2022			
Venue: Kantipur Engineering College			
9:00 AM – 12:30 PM	Visit of Farm		
	Post-evaluation, feedback of participants and certificate Distribution		
9:00 AM - 12: 30	2: 30 Certificate Distribution and participants feedback		
PM			

2.3 Farmer participants

There were ten farmers (1 from CMU; 1 from KKU; 1 from RUB; 5 from KEC and 2 from AEC) participating in the Cross Pilot training.

Sl.	Partner University	Name
No		
1	CMU	Nopnakhorn Ngampatirup (Thailand)
2	KKU	Surachai Lamphuttha (Thailand)
3	RUB	Tshering Yangzom (Bhutan)
4	KEC	Susheel Joshi (Nepal)
5	KEC	Pralhad Chapagain (Nepal)
6	KEC/AEC	Dollraj Pandey (Nepal)
7	AEC	Binisha Shrestha (Nepal)
8	AEC	Prabin Pramod Khatiwada (Nepal)
9	KEC	Ram Prasad Paudel (Nepal)
10	KEC	Bishal Bhattarai (Nepal)

Table 4. Farmers participating the cross pilot training

2.4 Trainer

The trainers for the cross pilot training from the consortium are listed below:

Sl.	Partner University	Name
No		
1	UWS	Ravi Chandra Koirala
2	CMU	Paweena Suebsombut
3	CMU	Padungphong Sitthithan
4	KKU	Patcharee Hongthong
5	KEC	Keshar Prasain
6	KEC/AEC	Krishna Keshav Chaudhary
7	KEC	Tek Narayan Adhikari
8	AEC	Kalpana Karki
9	RUB	Ugyen Yangchen
10	RUB	Budhiman Limboo

 Table 5: Name of the trainers

3. Evaluation of Farmers

The farmers were evaluated on the pre-evaluation and post-evaluation questions (annex 1). Pre-evaluation was conducted before the start of the training and post evaluation conducted after the training. The comparative progress of all participants is highlighted in the graph below:

Figure 1: Evaluation of the farmers

Ten questions were asked with total 15 weightage. The total marks obtained by the smart farmers before and after the training was compared. The average score of the farmers in preevaluation and post-evaluation were 9 and 10 respectively.

4. Feedback from the Participants

At the end of the training feedback was taken from the participants. The feedback was collected on the basic of seven questions and one suggestion. The summary of the feedback is as following:

Question No. 1

How Effective were the presentation in the training session?

11 responses

The training was considered very effective by 10 participants out of 11.

Question No. 2

How Effective were the Demonstration in the training session?

11 responses

Out of 11 Participants 8 participants considered the demonstrations of sensors, equipment and technology very effective and the remaining 3 considered it as effective

Question No. 3

How effective were the Field Visits in the training session? 11 responses Very Effective Very Effective Average Loss Effective

9 out of 11 participants marked the field visit to be very effective and 2 participants considered it as effective.

Question No. 4

Did the training content meet your expectation?

81.8%

11 responses

Less Effective Not Effective at all

8 out of 11 participants considered that the training could meet their expectations completely. Three participants felt that the training fulfilled their expectation to the large extent.

Question No. 5

Nine out of 11 participants rated the overall training as excellent and two participants rated it as good.

Question No. 6

All the 11 participants agreed that they learnt something new in the training.

Question No. 7

Eight out of 11 participants mentioned that the training was completely relevant to their needs and three participants mentioned the training was relevant to large extent.

The suggestions from the participants for the improvement of such trainings were:

Improve in presentation language
No, Not at all
Need Extra time and more session
Good training, Need more advance training
Need more practical session
Less Demonstration part so request to increase it
Need such kind of training in other parts of Nepal too.
Everything was perfect! Extra farm visit
Excellent training!! It will be better if we include government personal

Annexure 1: Knowledge assessment form

Pre-Evaluation and Post-Evaluation Sheet

Table 6. Knowledge assessment form

Name	
Address	
Email	
Phone	

Choose the correct answer with $(\sqrt{)}$ mark.

- 1. What advantages does radio frequency identification provide?
 - A. Animals are not stressed
 - B. Animals eat more food
 - C. Farmer can manage each animal individually
 - D. Animals sleep well
- 2. Which of the following is not included in the livestock housing system?
 - A. Ventilation system
 - B. Cooling system
 - C. Appropriate food supplements
 - D. Fences and gates
- 3. Which sensor supports controlling the climate in cattle housing?
 - A. Humidity sensor
 - B. Temperature sensor
 - C. Motion sensor
 - D. pH sensor
- 4. What is the application of motion sensors?
 - A. Automatically turn the water on and off with the humidity control system
 - B. Using the card to scan in and out of the door
 - C. Controlling the lights on and off based on the movement of objects
 - D. Automatic power supply when the power goes out
- 5. Acidity or alkalinity of soil is measured using:
 - A. pH meter
 - B. Humidity meter
 - C. Thermometer
 - D. Anemometer
- 6. An acidic soil will usually have all of the following nutrients except:
 - A. Fe

- B. Mn
- C. B
- D. N
- 7. Electrical conductivity in soil indicates:
 - A. Soil Salinity
 - B. Soil particle density
 - C. Soilhumidity
 - D. Soil bulk density
- 8. When the temperature of water increases, dissolved oxygen
 - A. Increases
 - B. Decreases
 - C. Has no effect
 - D. Initially increases and then decreases
- 9. Why sunlight is required in the fish farming
 - A. To raise the temperature of water
 - B. To help Algae grow
 - C. To increase the dissolve Oxygen
 - D. To increase fish growth
- 10. How the dissolved oxygen is increased in the fish pond
 - A. By adding urea
 - B. By adding salt
 - C. By growing algae
 - D. By providing light
- 11. Which one is **INCORRECT** about water temperature sensor?
 - A. To collet temperature of water.
 - B. Can connect with irrigation system.
 - C. To measure value for cooling system.
 - D. None of above
- 12. Which one is **INCORRECT** about an application of soil moisture sensor?
 - A. It is used to measure the moisture in soil.
 - B. It is used to be connected to an irrigation system.
 - C. It is more effective at maximizing irrigation when plants do not need additional water.
 - D. It is more effective at maximizing irrigation system in terms of saving water resource.

13. If sensors measure soil moisture value = 35%, air temperature = $28.5 \,^{\circ}$ C, and water temperature = $35 \,^{\circ}$ C, what is the meaning of these values and how to solve these situations?

Use following condition to answer question 13

Optimum soil moisture is 55 % - 75%Optimum air temperature is $25 \degree C - 30 \degree C$ Optimum water temperature is $20 \degree C - 25 \degree C$

A. - Water in soil is not enough for crops growth, need to turn on irrigation.

- Air temperature is appropriate to crops growth.

- Water temperature is too high, put more water into water tank to reduce water temperature.

B. - Water in soil is enough for crops growth.

- Air temperature is appropriate to crops growth.

- Water temperature is too high, put more water into water tank to reduce water

temperature.

C. - Water in soil is not enough for crops growth, need to turn on irrigation.

- Air temperature is not appropriate to crops growth, turn on mist irrigation to

reduce air temperature.

- Water temperature is too high, put more water into water tank to reduce water

temperature.

D. - Water in soil is not enough for crops growth, need to turn on irrigation.

- Air temperature is appropriate to crops growth.

- Water temperature is appropriate to irrigate crops.

- Air temperature is not appropriate to crops growth, turn on mist irrigation to

reduce air temperature.

- Water temperature is too high, put more water into water tank to reduce water

temperature.

14. Degree Brix in fruits indicates:

A. The hardness of the fruit pulp

B. Size of the fruit

C. Dissolved solids present in the fruit

D. Amount of water present in the fruit skin

15. Device used to measure Degree Brix in the fruit is:

A. Fruit Durometer

B. Fruit Refractometer

C. EC Meter

D. Fruit Penetrometer

Annexure 2: Pictures from Cross Pilot training Day One

Day Two

